Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Benzyl *N'*-(2-chlorobenzylidene)hydrazinecarbodithioate

Zhi-Qiang Shi,^a* Ning-Ning Ji^b and Qin-Qin Ji^c

^aDepartment of Materials Science and Chemical Engineering, Taishan University, 271021 Taian, Shandong, People's Republic of China, ^bDepartment of Chemistry, Taishan University, 271021 Taian, Shandong, People's Republic of China, and ^cDepartment of Chemical Engineering and Technology, School of Chemical Engineering and Technology, School of Chemical Engineering and Technology, China University of Mining and Technology, 221116 Xuzhou, Jiangsu, People's Republic of China Correspondence e-mail: kobeecho@163.com

Received 20 September 2008; accepted 27 October 2008

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.005 Å; R factor = 0.046; wR factor = 0.127; data-to-parameter ratio = 15.3.

The asymmetric unit of the title compound, $C_{15}H_{13}ClN_2S_2$, contains two independent molecules, which are linked into a pseudo-centrosymmetric dimer by intermolecular $N-H\cdots S$ hydrogen bonds. The aromatic rings form dihedral angles of 67.06 (3) and 81.85 (2)° in the two independent molecules.

Related literature

For the biomedical properties of ligands derived from *S*benzyldithiocarbazate, see: Ali *et al.* (2001, 2002); Tarafder *et al.* (2001, 2008). For bond-length data, see: Allen *et al.* (1987).

a = 11.877 (2) Å b = 11.906 (2) Å c = 12.623 (3) Å

Experimental

Crystal data		
$C_{15}H_{13}ClN_2S_2$		
$M_r = 320.84$		
Triclinic. P1		

$\alpha = 68.242 \ (3)^{\circ}$	
$\beta = 71.116 \ (4)^{\circ}$	
$\gamma = 82.335 \ (4)^{\circ}$	
V = 1568.4 (5) Å ³	
Z = 4	

Data collection

Bruker APEXII CCD area-detector	8397 measured reflections
diffractometer	5524 independent reflections
Absorption correction: multi-scan	3436 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2005)	$R_{\rm int} = 0.026$
$T_{\min} = 0.942, \ T_{\max} = 0.971$	

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.046 & 361 \text{ parameters} \\ wR(F^2) = 0.127 & H\text{-atom parameters constrained} \\ S = 0.97 & \Delta\rho_{\max} = 0.44 \text{ e } \text{\AA}^{-3} \\ 5524 \text{ reflections} & \Delta\rho_{\min} = -0.46 \text{ e } \text{\AA}^{-3} \end{array}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$N1 - H1 \cdots S4$ $N3 - H3A \cdots S2$	0.86	2.56	3.405 (3)	166
	0.86	2.60	3.451 (3)	169

Data collection: *APEX2* (Bruker, 2005); cell refinement: *APEX2* and *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This project was supported by the Postgraduate Foundation of Taishan University (grant No. Y06–2–08).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2453).

References

- Ali, M. A., Mirza, A. H., Butcher, R. J., Tarafder, M. T. H., Ali, A. M. & Manaf, A. (2001). *Inorg. Chim. Acta*, 320, 1–6.
- Ali, M. A., Mirza, A. H., Butcher, R. J., Tarafder, M. T. H., Keat, T. B., Ali, A. M. & &Manaf, A. (2002). J. Inorg. Biochem. 92, 141–148.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tarafder, M. T. H., Islam, M. T., Islam, M. A. A. A. A. A., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, m416–m417.
- Tarafder, M. T. H., Kasbollah, A., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2001). *Polyhedron*, **20**, 2363–2370.

Mo $K\alpha$ radiation $\mu = 0.50 \text{ mm}^{-1}$

 $0.12 \times 0.10 \times 0.06 \text{ mm}$

T = 295 (2) K

Acta Cryst. (2008). E64, o2249 [doi:10.1107/S1600536808034892]

Benzyl N'-(2-chlorobenzylidene)hydrazinecarbodithioate

Z.-Q. Shi, N.-N. Ji and Q.-Q. Ji

Comment

In recent years, the intriguing coordination chemistry and increasingly important biomedical properties of ligands derived from *S*-benzyldithiocarbazate(SBDTC) have received much attention (Ali *et al.*, 2001, 2002; Tarafder *et al.*, 2001, 2008). In order to search for new ligands derived from SBDTC, the title compound, (I), was synthesized. Herewith we present its crystal structure.

In (I), all bond lengths and angles are normal (Allen *et al.*, 1987). The C=N bond length in the independent molecules are 1.279 (3) Å(C7=N2) and 1.271 (4) Å(C22=N4), respectively, showing the double-bond character. The C=S bond lengths of 1.656 (3) Å(S2=C8) and 1.661 (3) Å(S4=C23) are intermediate between the values of 1.82Å for a C—S single bond and 1.56Å for a C=S double bond. The C=N—N angles in the independent molecule of 115.5 (2)° and 115.6 (3)° are significantly smaller than the ideal value of 120° expected for sp^2 -hybridized N atoms. This is probably a consequence of repulsion between the nitrogen lone pairs and the adjacent N bonds.

Two independent molecules are linked by N—H···S hydrogen bonds (Table 1) into pseudo-centrosymmetric dimers (Fig. 1).

Experimental

The title compound was synthesized by the reaction of hydrazinecarbodithioic acid benzyl ester(1 mmol, 198.3 mg) with 2-chloro-benzaldehyde(1 mmol, 140.6 mg) in ethanol(20 ml) under reflux conditions (343 K) for 6 h. The solvent was removed and the solid product recrystallized from tetrahydrofuran. After five days yellow crystals suitable for X-ray diffraction study were obtained.

Refinement

All H atoms were placed in idealized positions (C—H = 0.93— 0.97 Å, N—H = 0.86 Å) and refined as riding atoms. For those bound to C, $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$. while for those bound to N, $U_{iso}(H) = 1.2 U_{eq}(N)$.

Figures

Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level. Dashed lines indicate hydrogen bonds.

Benzyl N'-(2-chlorobenzylidene)hydrazinecarbodithioate

Crystal data	
C ₁₅ H ₁₃ ClN ₂ S ₂	Z = 4
$M_r = 320.84$	$F_{000} = 664$
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.359 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo K α radiation $\lambda = 0.71073$ Å
a = 11.877 (2) Å	Cell parameters from 1618 reflections
b = 11.906 (2) Å	$\theta = 2.6 - 24.6^{\circ}$
c = 12.623 (3) Å	$\mu = 0.50 \text{ mm}^{-1}$
$\alpha = 68.242 \ (3)^{\circ}$	T = 295 (2) K
$\beta = 71.116 \ (4)^{\circ}$	Block, yellow
$\gamma = 82.335 \ (4)^{\circ}$	$0.12 \times 0.10 \times 0.06 \text{ mm}$
$V = 1568.4 (5) \text{ Å}^3$	

Data collection

Bruker APEXII CCD area-detector diffractometer	5524 independent reflections
Radiation source: fine-focus sealed tube	3436 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.026$
T = 295(2) K	$\theta_{\text{max}} = 25.1^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.8^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2005)	$h = -11 \rightarrow 14$
$T_{\min} = 0.942, \ T_{\max} = 0.971$	$k = -14 \rightarrow 13$
8397 measured reflections	$l = -14 \rightarrow 14$

Refinement

Refinement on F^2
Least-squares matrix: full
$R[F^2 > 2\sigma(F^2)] = 0.046$
$wR(F^2) = 0.127$
S = 0.97
5524 reflections
361 parameters
Primary atom site location: structure methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_0^2) + (0.0533P)^2 + 0.4623P]$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.44$ e Å⁻³ $\Delta\rho_{min} = -0.46$ e Å⁻³

e-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C12	0.61916 (10)	0.15814 (11)	0.57081 (9)	0.0994 (4)
S3	0.36389 (7)	0.66976 (8)	0.21058 (7)	0.0541 (3)
S4	0.15028 (7)	0.61729 (8)	0.43141 (7)	0.0566 (3)
N3	0.3563 (2)	0.5043 (2)	0.4167 (2)	0.0514 (7)
H3A	0.3270	0.4634	0.4914	0.062*
N4	0.4704 (2)	0.4789 (2)	0.3570 (2)	0.0478 (7)
C16	0.6959 (3)	0.2483 (3)	0.4266 (3)	0.0544 (9)
C17	0.6419 (3)	0.3506 (3)	0.3648 (3)	0.0455 (8)
C18	0.7096 (3)	0.4188 (3)	0.2498 (3)	0.0554 (9)
H18	0.6770	0.4888	0.2056	0.066*
C19	0.8242 (3)	0.3835 (3)	0.2014 (3)	0.0606 (10)
H19	0.8678	0.4290	0.1244	0.073*
C20	0.8742 (3)	0.2812 (4)	0.2663 (3)	0.0617 (10)
H20	0.9518	0.2584	0.2332	0.074*
C21	0.8112 (3)	0.2133 (3)	0.3785 (3)	0.0631 (10)
H21	0.8452	0.1443	0.4224	0.076*
C22	0.5211 (3)	0.3882 (3)	0.4168 (3)	0.0504 (8)
H22	0.4802	0.3449	0.4955	0.061*
C23	0.2902 (3)	0.5914 (3)	0.3608 (3)	0.0441 (8)
C24	0.2502 (3)	0.7786 (3)	0.1668 (3)	0.0612 (10)
H24A	0.1772	0.7372	0.1861	0.073*
H24B	0.2335	0.8347	0.2097	0.073*
C25	0.2944 (3)	0.8461 (3)	0.0345 (3)	0.0480 (8)
C26	0.3717 (3)	0.9404 (3)	-0.0123 (3)	0.0609 (10)
H26	0.3981	0.9628	0.0389	0.073*
C27	0.4111 (3)	1.0026 (3)	-0.1335 (3)	0.0689 (11)
H27	0.4636	1.0661	-0.1634	0.083*
C28	0.3730 (3)	0.9712 (4)	-0.2098 (3)	0.0684 (11)
H28	0.3994	1.0132	-0.2916	0.082*
C29	0.2967 (3)	0.8785 (4)	-0.1655 (3)	0.0716 (11)
H29	0.2702	0.8573	-0.2172	0.086*
C30	0.2579 (3)	0.8152 (3)	-0.0442 (3)	0.0623 (10)
H30	0.2065	0.7509	-0.0151	0.075*

Cl1	-0.22425 (9)	0.74778 (9)	0.55632 (8)	0.0702 (3)
S 1	0.06032 (8)	0.28590 (8)	0.93397 (7)	0.0589 (3)
S2	0.25595 (8)	0.30266 (9)	0.70505 (7)	0.0619 (3)
N1	0.0603 (2)	0.4336 (2)	0.7232 (2)	0.0497 (7)
H1	0.0857	0.4679	0.6469	0.060*
N2	-0.0472 (2)	0.4698 (2)	0.7859 (2)	0.0466 (7)
C1	-0.2804 (3)	0.6881 (3)	0.7111 (3)	0.0492 (8)
C2	-0.2159 (3)	0.6018 (3)	0.7786 (3)	0.0444 (8)
C3	-0.2674 (3)	0.5582 (3)	0.9025 (3)	0.0577 (9)
Н3	-0.2269	0.5002	0.9504	0.069*
C4	-0.3772 (3)	0.5999 (4)	0.9548 (3)	0.0728 (11)
H4	-0.4098	0.5708	1.0375	0.087*
C5	-0.4383 (3)	0.6844 (4)	0.8849 (4)	0.0804 (13)
Н5	-0.5128	0.7118	0.9205	0.097*
C6	-0.3909 (3)	0.7286 (4)	0.7634 (3)	0.0669 (10)
H6	-0.4329	0.7857	0.7164	0.080*
C7	-0.1006 (3)	0.5565 (3)	0.7233 (3)	0.0461 (8)
H7	-0.0652	0.5910	0.6413	0.055*
C8	0.1257 (3)	0.3461 (3)	0.7791 (3)	0.0446 (8)
C9	0.1668 (3)	0.1677 (3)	0.9769 (3)	0.0613 (10)
H9A	0.1802	0.1150	0.9308	0.074*
H9B	0.2421	0.2030	0.9614	0.074*
C10	0.1176 (3)	0.0961 (3)	1.1086 (3)	0.0476 (8)
C11	0.1692 (3)	0.1043 (3)	1.1888 (3)	0.0572 (9)
H11	0.2325	0.1561	1.1620	0.069*
C12	0.1273 (3)	0.0359 (3)	1.3090 (3)	0.0639 (10)
H12	0.1632	0.0415	1.3622	0.077*
C13	0.0338 (3)	-0.0398 (3)	1.3501 (3)	0.0632 (10)
H13	0.0060	-0.0854	1.4310	0.076*
C14	-0.0190 (3)	-0.0484 (3)	1.2711 (3)	0.0672 (11)
H14	-0.0827	-0.0999	1.2983	0.081*
C15	0.0231 (3)	0.0200 (3)	1.1512 (3)	0.0617 (10)
H15	-0.0132	0.0144	1.0982	0.074*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl2	0.0801 (8)	0.0990 (9)	0.0654 (7)	0.0195 (6)	-0.0101 (6)	0.0142 (6)
S3	0.0454 (5)	0.0542 (6)	0.0410 (5)	0.0071 (4)	-0.0009 (4)	-0.0054 (4)
S4	0.0451 (5)	0.0626 (6)	0.0416 (5)	0.0100 (4)	-0.0017 (4)	-0.0085 (4)
N3	0.0410 (16)	0.0570 (18)	0.0386 (15)	0.0077 (13)	-0.0044 (12)	-0.0063 (13)
N4	0.0396 (15)	0.0508 (17)	0.0441 (16)	0.0053 (13)	-0.0071 (13)	-0.0135 (13)
C16	0.046 (2)	0.064 (2)	0.0444 (19)	0.0060 (17)	-0.0116 (16)	-0.0131 (17)
C17	0.0387 (18)	0.050 (2)	0.0456 (18)	0.0053 (15)	-0.0141 (15)	-0.0155 (16)
C18	0.051 (2)	0.056 (2)	0.054 (2)	0.0006 (17)	-0.0130 (17)	-0.0162 (17)
C19	0.056 (2)	0.069 (3)	0.052 (2)	-0.005 (2)	-0.0029 (18)	-0.0267 (19)
C20	0.045 (2)	0.077 (3)	0.070 (3)	0.012 (2)	-0.0156 (19)	-0.040(2)
C21	0.057 (2)	0.071 (3)	0.063 (2)	0.019 (2)	-0.027 (2)	-0.025 (2)

C22	0.047 (2)	0.052 (2)	0.0402 (18)	0.0013 (17)	-0.0081 (16)	-0.0086 (16)
C23	0.0441 (18)	0.0427 (19)	0.0399 (17)	0.0017 (15)	-0.0081 (15)	-0.0126 (15)
C24	0.049 (2)	0.059 (2)	0.051 (2)	0.0140 (17)	-0.0038 (17)	-0.0065 (17)
C25	0.0372 (18)	0.045 (2)	0.0478 (19)	0.0061 (15)	-0.0070 (15)	-0.0073 (16)
C26	0.064 (2)	0.065 (2)	0.051 (2)	-0.010 (2)	-0.0216 (18)	-0.0108 (19)
C27	0.073 (3)	0.062 (3)	0.057 (2)	-0.020 (2)	-0.014 (2)	-0.002 (2)
C28	0.064 (2)	0.075 (3)	0.048 (2)	0.002 (2)	-0.0136 (19)	-0.004 (2)
C29	0.064 (2)	0.093 (3)	0.060 (2)	0.000 (2)	-0.026 (2)	-0.024 (2)
C30	0.044 (2)	0.060 (2)	0.077 (3)	-0.0071 (18)	-0.0144 (19)	-0.019 (2)
Cl1	0.0795 (7)	0.0724 (7)	0.0449 (5)	0.0055 (5)	-0.0195 (5)	-0.0065 (4)
S1	0.0544 (5)	0.0630 (6)	0.0368 (5)	0.0098 (4)	-0.0037 (4)	-0.0044 (4)
S2	0.0575 (6)	0.0645 (6)	0.0414 (5)	0.0168 (5)	-0.0038 (4)	-0.0092 (4)
N1	0.0471 (16)	0.0566 (18)	0.0324 (14)	0.0087 (14)	-0.0064 (12)	-0.0090 (13)
N2	0.0382 (15)	0.0541 (17)	0.0400 (15)	0.0016 (13)	-0.0064 (12)	-0.0133 (13)
C1	0.050 (2)	0.053 (2)	0.0430 (19)	0.0028 (17)	-0.0150 (16)	-0.0158 (16)
C2	0.0414 (18)	0.048 (2)	0.0406 (18)	-0.0013 (15)	-0.0083 (15)	-0.0144 (15)
C3	0.056 (2)	0.061 (2)	0.045 (2)	0.0045 (18)	-0.0118 (17)	-0.0111 (17)
C4	0.058 (2)	0.092 (3)	0.049 (2)	0.005 (2)	-0.0011 (19)	-0.019 (2)
C5	0.050 (2)	0.108 (4)	0.075 (3)	0.021 (2)	-0.010 (2)	-0.038 (3)
C6	0.057 (2)	0.078 (3)	0.065 (3)	0.019 (2)	-0.025 (2)	-0.025 (2)
C7	0.0427 (18)	0.050 (2)	0.0369 (17)	0.0004 (16)	-0.0086 (15)	-0.0086 (15)
C8	0.0452 (18)	0.0440 (19)	0.0380 (17)	0.0020 (15)	-0.0105 (15)	-0.0095 (15)
С9	0.059 (2)	0.061 (2)	0.044 (2)	0.0099 (18)	-0.0101 (17)	-0.0044 (17)
C10	0.053 (2)	0.044 (2)	0.0389 (17)	0.0089 (16)	-0.0134 (16)	-0.0101 (15)
C11	0.065 (2)	0.049 (2)	0.053 (2)	-0.0041 (18)	-0.0205 (18)	-0.0095 (17)
C12	0.076 (3)	0.070 (3)	0.047 (2)	0.009 (2)	-0.026 (2)	-0.0189 (19)
C13	0.077 (3)	0.060 (2)	0.0364 (19)	0.010 (2)	-0.0092(19)	-0.0085 (17)
C14	0.066 (2)	0.065 (3)	0.055 (2)	-0.011 (2)	-0.007 (2)	-0.011 (2)
C15	0.066 (2)	0.069 (3)	0.050 (2)	-0.003 (2)	-0.0174 (19)	-0.0199 (19)
Geometric par	ameters (Å. °)					
C12 C16		1 742 (2)	C11	C1	1 72	9 (<u>2</u>)
C12 - C10		1.742 (3)		-01	1.75	8 (3) 1 (2)
S3-C23		1.730(3)	51-0		1.73	1(3)
S3—C24		1.613(3)	51-0	C9	1.01	(3)
S4—C23		1.002(3)	52—1 N1		1.03	7 (3) 4 (4)
N3-C25		1.557 (4)	NI—		1.55	4 (4) 5 (2)
N3—N4		1.370 (3)	NI—	1NZ	1.37	3 (3) 00
N3—H3A		1.271(4)	N1	C7	0.80	0.(4)
N4 - C22		1.271 (4)	N2—	C7 C6	1.27	9 (4) 7 (5)
C10-C17		1.384 (4)	CI—	C0	1.37	7 (3)
C10-C21		1.384 (3)	C1—	C2 C2	1.39	0 (4) 8 (4)
C17 - C18		1.377 (4)	C2—	CJ C7	1.39	o (4) 5 (4)
C17 - C22		1.400 (4)	C2—		1.45	5 (4) 6 (5)
C10-C19		1.300 (3)	C3—	U1 U2	1.3/	0(3)
$C_{10} = C_{10}$		0.9300	C3-	пэ С5	0.93	1 (5)
C19 - C20		1.3/3(3)	C4—		1.3/	1 (3)
C_{19} C_{119} C_{20} C_{21}		1 259 (5)	C4—	11 4 C6	0.93	6 (5)
C20-C21		1.558 (5)	05-	0	1.30	0(3)

C20—H20	0.9300	С5—Н5	0.9300
C21—H21	0.9300	С6—Н6	0.9300
C22—H22	0.9300	С7—Н7	0.9300
C24—C25	1.503 (4)	C9—C10	1.512 (4)
C24—H24A	0.9700	С9—Н9А	0.9700
C24—H24B	0.9700	С9—Н9В	0.9700
C25—C26	1.373 (4)	C10—C15	1.374 (4)
C25—C30	1.379 (5)	C10—C11	1.378 (4)
C26—C27	1.377 (5)	C11—C12	1.384 (5)
C26—H26	0.9300	C11—H11	0.9300
C27—C28	1.366 (5)	C12—C13	1.364 (5)
С27—Н27	0.9300	C12—H12	0.9300
C28—C29	1.355 (5)	C13—C14	1.377 (5)
C28—H28	0.9300	С13—Н13	0.9300
C29—C30	1.381 (5)	C14—C15	1.382 (5)
С29—Н29	0.9300	C14—H14	0.9300
С30—Н30	0.9300	С15—Н15	0.9300
C23—S3—C24	101.41 (15)	C8—S1—C9	101.13 (15)
C23—N3—N4	121.2 (2)	C8—N1—N2	121.0 (2)
C23—N3—H3A	119.4	C8—N1—H1	119.5
N4—N3—H3A	119.4	N2—N1—H1	119.5
C22—N4—N3	115.6 (3)	C7—N2—N1	115.5 (3)
C17—C16—C21	122.5 (3)	C6—C1—C2	121.8 (3)
C17—C16—Cl2	120.3 (3)	C6—C1—Cl1	117.5 (3)
C21—C16—Cl2	117.3 (3)	C2—C1—Cl1	120.7 (3)
C16—C17—C18	116.9 (3)	C1—C2—C3	117.1 (3)
C16—C17—C22	122.2 (3)	C1—C2—C7	121.8 (3)
C18—C17—C22	120.9 (3)	C3—C2—C7	121.0 (3)
C19—C18—C17	120.8 (3)	C4—C3—C2	121.1 (3)
C19—C18—H18	119.6	С4—С3—Н3	119.5
C17—C18—H18	119.6	С2—С3—Н3	119.5
C20-C19-C18	120.3 (3)	C5—C4—C3	119.9 (4)
С20—С19—Н19	119.9	С5—С4—Н4	120.1
С18—С19—Н19	119.9	C3—C4—H4	120.1
C21—C20—C19	120.5 (3)	C6—C5—C4	120.6 (4)
C21—C20—H20	119.8	С6—С5—Н5	119.7
C19—C20—H20	119.8	С4—С5—Н5	119.7
C20—C21—C16	119.2 (3)	C5—C6—C1	119.5 (4)
C20—C21—H21	120.4	С5—С6—Н6	120.3
C16—C21—H21	120.4	С1—С6—Н6	120.3
N4—C22—C17	121.6 (3)	N2—C7—C2	120.9 (3)
N4—C22—H22	119.2	N2—C7—H7	119.6
C17—C22—H22	119.2	С2—С7—Н7	119.6
N3—C23—S4	121.1 (2)	N1—C8—S2	121.6 (2)
N3—C23—S3	114.0 (2)	N1—C8—S1	113.4 (2)
S4—C23—S3	124.88 (19)	S2—C8—S1	125.03 (19)
C25—C24—S3	108.6 (2)	C10—C9—S1	108.5 (2)
C25—C24—H24A	110.0	С10—С9—Н9А	110.0
S3—C24—H24A	110.0	S1—C9—H9A	110.0

C25—C24—H24B	110.0	С10—С9—Н9В	110.0
S3—C24—H24B	110.0	S1—C9—H9B	110.0
H24A—C24—H24B	108.4	Н9А—С9—Н9В	108.4
C26—C25—C30	117.7 (3)	C15—C10—C11	118.4 (3)
C26—C25—C24	121.6 (3)	C15—C10—C9	121.5 (3)
C30—C25—C24	120.8 (3)	C11—C10—C9	120.0 (3)
C25—C26—C27	121.3 (3)	C10-C11-C12	120.4 (3)
С25—С26—Н26	119.4	C10-C11-H11	119.8
С27—С26—Н26	119.4	C12—C11—H11	119.8
C28—C27—C26	120.1 (3)	C13—C12—C11	120.6 (3)
С28—С27—Н27	119.9	C13—C12—H12	119.7
С26—С27—Н27	119.9	C11—C12—H12	119.7
C29—C28—C27	119.6 (3)	C12—C13—C14	119.6 (3)
C29—C28—H28	120.2	С12—С13—Н13	120.2
С27—С28—Н28	120.2	C14—C13—H13	120.2
C28—C29—C30	120.5 (4)	C13—C14—C15	119.6 (3)
С28—С29—Н29	119.8	C13—C14—H14	120.2
С30—С29—Н29	119.8	C15—C14—H14	120.2
C25—C30—C29	120.9 (3)	C10-C15-C14	121.3 (3)
С25—С30—Н30	119.6	С10—С15—Н15	119.3
С29—С30—Н30	119.6	C14—C15—H15	119.3
C23—N3—N4—C22	-174.7 (3)	C8—N1—N2—C7	178.3 (3)
C21—C16—C17—C18	-0.1 (5)	C6—C1—C2—C3	-0.5 (5)
Cl2—C16—C17—C18	179.5 (3)	Cl1—C1—C2—C3	-179.9 (3)
C21—C16—C17—C22	-178.8 (3)	C6—C1—C2—C7	178.3 (3)
Cl2—C16—C17—C22	0.8 (5)	Cl1—C1—C2—C7	-1.0 (4)
C16-C17-C18-C19	0.7 (5)	C1—C2—C3—C4	-0.3 (5)
C22—C17—C18—C19	179.4 (3)	C7—C2—C3—C4	-179.2 (3)
C17-C18-C19-C20	-0.9 (5)	C2—C3—C4—C5	0.8 (6)
C18—C19—C20—C21	0.5 (6)	C3—C4—C5—C6	-0.6 (6)
C19—C20—C21—C16	0.1 (6)	C4—C5—C6—C1	-0.2 (6)
C17—C16—C21—C20	-0.3 (6)	C2-C1-C6-C5	0.8 (6)
Cl2—C16—C21—C20	-179.9 (3)	Cl1—C1—C6—C5	-179.8 (3)
N3—N4—C22—C17	179.8 (3)	N1—N2—C7—C2	179.0 (3)
C16—C17—C22—N4	-176.4 (3)	C1—C2—C7—N2	-174.0 (3)
C18—C17—C22—N4	5.0 (5)	C3—C2—C7—N2	4.8 (5)
N4—N3—C23—S4	176.9 (2)	N2—N1—C8—S2	-179.3 (2)
N4—N3—C23—S3	-2.0 (4)	N2—N1—C8—S1	0.3 (4)
C24—S3—C23—N3	-179.2 (3)	C9—S1—C8—N1	177.0 (2)
C24—S3—C23—S4	1.8 (3)	C9—S1—C8—S2	-3.5 (3)
C23—S3—C24—C25	-174.0 (2)	C8—S1—C9—C10	-174.1 (2)
S3—C24—C25—C26	-80.4 (4)	S1—C9—C10—C15	71.2 (4)
S3—C24—C25—C30	99.9 (3)	S1—C9—C10—C11	-110.1 (3)
C30—C25—C26—C27	0.4 (5)	C15-C10-C11-C12	0.9 (5)
C24—C25—C26—C27	-179.4 (3)	C9—C10—C11—C12	-177.8 (3)
C25—C26—C27—C28	0.2 (6)	C10-C11-C12-C13	-0.6 (6)
C26—C27—C28—C29	-0.1 (6)	C11—C12—C13—C14	0.2 (6)
C27—C28—C29—C30	-0.5 (6)	C12—C13—C14—C15	-0.1 (6)
C26—C25—C30—C29	-0.9 (5)	C11-C10-C15-C14	-0.9 (6)

C24—C25—C30—C29 C28—C29—C30—C25	178.8 (3) 1.0 (6)	C9—C10—C15—C14 C13—C14—C15—C10		177.8 (3) 0.5 (6)
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N1—H1…S4	0.86	2.56	3.405 (3)	166
N3—H3A…S2	0.86	2.60	3.451 (3)	169

Fig. 1